Telegram Group & Telegram Channel
🔍 How to: выбрать важные признаки и избежать переобучения

Выбор признаков и регуляризация — ключевые методы для повышения эффективности модели и предотвращения переобучения. Вот как это можно реализовать:

1️⃣ Использование Recursive Feature Elimination (RFE)

Метод RFE помогает выбрать наиболее значимые признаки, исключая менее важные:
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
rfe = RFE(model, n_features_to_select=5)
X_rfe = rfe.fit_transform(X, y)


2️⃣ L1-регуляризация (Lasso)

L1-регуляризация помогает «занулять» незначительные признаки, что эффективно для отбора:
from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
model.fit(X, y)


📌 Рекомендация: подбирайте оптимальное значение alpha с использованием кросс-валидации, например, через GridSearchCV.

3️⃣ Random Forest для выбора признаков

Алгоритм Random Forest вычисляет важность признаков, что позволяет отбирать наиболее значимые:
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X, y)
importances = model.feature_importances_


4️⃣ Регуляризация с Ridge (L2-регуляризация)

L2-регуляризация помогает уменьшить влияние менее значимых признаков, но не исключает их полностью:
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.1)
model.fit(X, y)


5️⃣ Анализ важности признаков с помощью деревьев решений

Если вы используете алгоритмы на основе деревьев решений, важно учитывать их внутреннюю важность признаков:
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X, y)
importances = model.feature_importances_


📌 Рекомендация: рассмотрите возможность комбинированного использования методов Lasso и RFE для более агрессивного отбора признаков, что может быть полезно, если ваш набор данных содержит множество признаков.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6420
Create:
Last Update:

🔍 How to: выбрать важные признаки и избежать переобучения

Выбор признаков и регуляризация — ключевые методы для повышения эффективности модели и предотвращения переобучения. Вот как это можно реализовать:

1️⃣ Использование Recursive Feature Elimination (RFE)

Метод RFE помогает выбрать наиболее значимые признаки, исключая менее важные:

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
rfe = RFE(model, n_features_to_select=5)
X_rfe = rfe.fit_transform(X, y)


2️⃣ L1-регуляризация (Lasso)

L1-регуляризация помогает «занулять» незначительные признаки, что эффективно для отбора:
from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
model.fit(X, y)


📌 Рекомендация: подбирайте оптимальное значение alpha с использованием кросс-валидации, например, через GridSearchCV.

3️⃣ Random Forest для выбора признаков

Алгоритм Random Forest вычисляет важность признаков, что позволяет отбирать наиболее значимые:
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X, y)
importances = model.feature_importances_


4️⃣ Регуляризация с Ridge (L2-регуляризация)

L2-регуляризация помогает уменьшить влияние менее значимых признаков, но не исключает их полностью:
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.1)
model.fit(X, y)


5️⃣ Анализ важности признаков с помощью деревьев решений

Если вы используете алгоритмы на основе деревьев решений, важно учитывать их внутреннюю важность признаков:
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X, y)
importances = model.feature_importances_


📌 Рекомендация: рассмотрите возможность комбинированного использования методов Lasso и RFE для более агрессивного отбора признаков, что может быть полезно, если ваш набор данных содержит множество признаков.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6420

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from ye


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA